Researchers discovered a method that could possibly be used to improve auditory perception in situations where sounds are difficult to distinguish. Despite the importance of hearing in human communication, we still understand very little of how acoustic signals are perceived and how they are processed to allow us to make sense of them.One thing is clear though: the more precisely we can distinguish sound patterns, the better our hearing is. But how does the brain manage to distinguish between relevant and less relevant information — especially in an environment with background noise?
Researchers led by Prof Dr Tania Rinaldi Barkat from the Department of Biomedicine at the University of Basel have investigated the neuronal foundation of sound perception and sound discrimination in a challenging sound environment.
The focus was on research into the auditory cortex – the “auditory brain,” that is, the area of the brain that processes acoustic stimuli.The resulting activity patterns stem from measurements in a mouse brain, reported the study published in – Cell Reports. As is well known, the distinction between sounds becomes more difficult the closer they are in the frequency spectrum. Initially, the researchers assumed that additional noise could make such a hearing task even more difficult. However, the opposite was observed: The team was able to demonstrate that the brain’s ability to distinguish subtle tone differences improved when white noise was added to the background.Compared to a quiet environment, the noise thus facilitated auditory perception.
The data of the research group showed that white noise significantly inhibited the activity of the nerve cells in the auditory cortex. Paradoxically, this suppression of the neuronal excitation led to a more precise perception of the pure tones.”We found that less overlap occurred between populations of neurons during two separate tone representations,” explained Professor Tania Barkat.
“As a result, the overall reduction in neuronal activity produced a more distinct tone representation.”To confirm that the auditory cortex and not another area of the brain were responsible for the change in sound perception, the researchers used the light-controlled technique optogenetic. Their findings could possibly be used to improve auditory perception in situations where sounds are difficult to distinguish. According to Barkat, it is conceivable that cochlear implants could be stimulated with an effect similar to white noise in order to improve the frequency resolution and thus the hearing result of their users.Heart disease is the No. 1 cause of death worldwide, and it’s mostly preventable by changing your lifestyle and managing risk factors. In honor of American Heart Month, here are seven ways you can prevent becoming a statistic.It’s also true that different types of exercise are needed to provide complete fitness.
“Aerobic exercise and resistance training are the most important for heart health,” says Johns Hopkins exercise physiologist Kerry J. Stewart, Ed.D. “Although flexibility doesn’t contribute directly to heart health, it’s nevertheless important because it provides a good foundation for performing aerobic and strength exercises more effectively .
”Resistance training has a more specific effect on body composition, Stewart says. For people who are carrying a lot of body fat (including a big belly, which is a risk factor for heart disease), it can help reduce fat and create leaner muscle mass. Research shows that a combination of aerobic exercise and resistance work may help raise HDL (good) cholesterol and lower LDL (bad) cholesterol.