Scientists have determined a gene signature that is linked to the severity of spinal cord injury in animals and humans.The discovery of key genes that are switched on or off in response to spinal cord injurycould inform the development of biomarkers that predict recovery and possibly pinpoint new targets for treatment.At the moment, there are no widely available treatments capable of immediately restoring motor and sensory function after injury. A major barrier is the lack of understanding of the complex cascade of biological processes that occur when a spinal cord injury happens.
Senior author Michael Skinnider said, “Our understanding of the pathophysiological processes triggered by spinal cord injury is fragmentary. We set out to integrate the data from decades of small-scale studies using a systems biology approach.”
The team first reviewed past experiments to find genes associated with the response to spinal cord injury, searching through more than 500 studies. They found 695 unique human genes that had been linked with the response to spinal cord injury and, of these, 151 were linked in more than one study. Further analysis showed that the genes are biologically and functionally related, coding for groups of protein molecules that physically interact with one another.To find if these genes truly reflect functional changes after spinal cord injury, the team constructed a network of genes from healthy human spinal cords and integrated this data with those determined from the experimental studies.
They found that two groups of genes included a high number of the genes that had been previously pinpointed in experiments as important in the response to spinal cord injury.They next looked at five experimental studies of gene expression in mice and rats after spinal cord injury to see whether these gene groups were significantly altered.”We have developed an integrated, systems-level approach to understand the mechanisms of spinal cord injury,” concludes lead author Squair.The full findings are present in the journal- ELife.